Graphics Study Fourier Transform

  • Gelacio Castillo Cabrera Instituto Politécnico Nacional
  • Martha Patricia Jiménez Villanueva Instituto Politécnico Nacional
  • Maribel Aragón García Instituto Politécnico Nacional

Abstract

Fourier Transform through graphic analysis is the study here delivered. This study is based on artificial and emulated temporal signals. The Fourier Transform is a well-established theory that has been extensively studied from different perspectives. This graphic analysis allows the identification of useful properties of the Fourier Transform. The results facilitate the application of the Fourier Transform in fields such as artificial intelligence. This is an introductory study that aims to contribute to the empirical perspective of Fourier analysis which is based on the generation of signals through the superposition of components with known parameters, such as frequency, amplitude, sampling frequency, and window size, since, in most cases, the smallest possible windows are suggested. As a result of this study, optimal parameters were identified to ensure reliable application in practical studies, such as audio signal processing.

References

Abood, S. I. (2020). Digital Signal Processing A Primer With MATLAB®. Boca Raton, FL 33487-2742: CRC Press Taylor & Francis Group.

Bahoura, M. (2019). Efficient FPGA-Based Architecture of the Overlap-Add Method for Short-Time Fourier Analysis/Synthesis. Electronics, MDPI.

Bertrand Alberti, E. (2006). Procesado Digital de Señales Fundamentos para comunicaciones y control-II. Barcelona: Edicions de la Universitat Politécnica de Catalunya, SL.

Cabrero Sañudo, D., Contreras Echebarria, A., & Rodríguez Gallego, R. (18 de Noviembre de 2014). MateWiki. Obtenido de Caminos: https://mat.caminos.upm.es/wiki/Transformada_de_Fourier_y_muestreo_de_señales

Deergha Rao, K., & Swamy, M. (2018). Digital Signal Processing. Theory and Practice. Singapore: Springer.

Fadali, M. S., & Visioli, A. (2013). Digital control engineering analysis and design. Waltham, MA 02451 USA: Elsevier.

Ingle, V. K., & Proakis, J. G. (2010). Digital Signal Processing Using MATLAB. Stamford: Cengage Learning.

Lewis, A. D. (2022). A Mathematical Introduction to Signals and Systems Volume V. System Theory. Canada: Queen's University.

Mata Hernandez, G., Sánchez Esquivel, V. M., & Gómez González, J. M. (2017). Análisis de sistemas y señales con cómputo avanzado. CDMX: Córima Books S.A. de C.V.

Meyer-Baese, U. (2021). Digital Signal Processing with Field Programmable Gate Arrays. Tallahassee, Florida: Springer.

Ngozichukwuka Uwaechia, A., & Athiar Ramli, D. (2021). A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication: Recent Advances and Future Challenges. IEEE Access, 97760 -97802.

Oppenheim, A. V., & Schafer, R. W. (2011). Tratamiento de señales en tiempo discreto. Madrid: Pearson Educación S. A.

Rabiner, L. R., & Schafer, R. W. (2007). Introduction to digital speech processing. Hanover, MA 02339, USA: Publishers Inc. PO Box 1024.

Sundararajan, D. (2021). Digital Signal Processing. An Introduction. Switzerland: Springer.

Tan, L., & Jiang, J. (2013). Digital Signal Processing. Waltham: Elsevier.

Wang, M., Yin, X., Zhu, Y., & Hu, J. (2022). Representation Learning and Pattern Recognition in Cognitive Biometrics: A Survey. Sensors, 24.
Published
2025-05-04
Section
Artículos Científicos